Images from mirrors

- Understand difference: Object Image
- **Images** can be:
 - real or virtual
 - erect (M>0) or inverted (M<0)
 - enlarged (|M|>1) or reduced (|M|<1)
- mirror formula:

$$\frac{1}{p} + \frac{1}{q} = \frac{1}{f} = \frac{2}{R}$$

- sign convention: (see Table 26.1)
 - p,q positive on the left, negative on the right
 - f,R positive for concave mirror, negative for convex mirror
 - if light approaches from the left
- magnification:

$$M = -\frac{q}{p} = \frac{h}{h}$$

Images from lenses

- **Images** can be:
 - real or virtual
 - erect (M>0) or inverted (M<0)
 - enlarged (|M|>1) or reduced (|M|<1)
- thin lens formula:

$$\frac{1}{p} + \frac{1}{q} = \frac{1}{f}$$

- sign convention:
 - p positive (real) on the left / negative (virtual) on the right
 - q positive on the right, negative on the left
 - f positive for convex lens (converging)
 - f negative for concave lens (diverging)
- magnification:

$$M = -\frac{q}{p} = \frac{h}{h}$$

Ray Tracing

• For Mirrors:

- parallel ray passes through focal point
- focal point ray is reflected parallel to principal axis
- ray incident at vertex reflected about principal axis
- radial ray (through center of curvature) reverses direction

• For Lenses:

- parallel ray passes through focal point
- ray through/from/towards focal point becomes parallel
- ray through center of lens is not deviated